Accelerated Aging Techniques for Medical Device Products

This webinar will make participants to understand and start taking advantage of accepted Accelerated Aging Techniques, also understand the design and use of accelerated aging programs to shorten development time.

Karl J Hemmerich
Instructor:
Karl J Hemmerich
Duration:
60 Minutes
Product Id:
501733
Access:
6 months

More Trainings by this Expert

Price Details
$190 Recorded
$390 Corporate Recorded
Price Detail Options
Overview:

Accelerated aging (AA) is testing that uses aggravated conditions of heat, oxygen, sunlight, vibration, chemicals, etc. to speed up the normal aging processes of items. It is used to help determine the long-term effects of expected levels of stress within a shorter time, usually in a laboratory by controlled standard test methods.

AA is used to estimate the useful lifespan of a product or its shelf life when actual lifespan data is unavailable. The ability of product designers to accurately predict changes in polymer properties is of critical importance to the medical device, consumer, and industrial markets.

Join this Webinar to better understand and start taking advantage of accepted Accelerated Aging Techniques. Understand General Aging Theory - The Simplified Protocol for Accelerated Aging (10 Degree Rule) and Iterative Test Designs.

In order to design a test plan that accurately models the time correlated degradation of polymers, it is necessary to have an in-depth knowledge of materials composition and structure, end product use and mis-use, assembly and sterilization process effects. Basic polymer chemistry will be reviewed as well as the changes in polymer characteristics that can be anticipated and designed for. Learn how to plan for post-production and lifetime functionality.

Why should you Attend: Accurate prediction of product shelf-life performance is critical to your success. "Do it right the first time", choose the most functional and resistant materials for your product instead of going through the post launch cycle of panic driven product revisions. Also learn the basis for choosing the optimum accelerated test design based on materials, product design, processing, and functional product requirements. Learn how to "think like a molecule" and plan and design around "aging" induced changes in materials qualities (brittleness, color, and odor) that cut short your product's long term functionality. The understanding of a product's long term safety and efficacy is a must in today's litigious world.

Learn how to:

  • Understand the design and use of accelerated aging programs to shorten development time
  • Identify the materials that perform best in "stressful" environments
  • Effects of processing (molding, assembly)
  • Enhance product and packaging designs
  • Product Design features to avoid

Areas Covered in the Session:
  • Shelf Life Test Methods - Accelerated Aging Test Design - Modeling
  • General Aging Theory - Simplified Protocol
  • Accelerated Aging Test Designs
  • Polymers Chemistry - choosing the best polymer candidate
  • Product Validation and Verification (ISO9001)
  • Regulatory (i.e. FDA) Acceptance and Legal Considerations
  • Determining Useful Product Life - from Consumer or medical Products to Atomic Reactors
  • What time periods and what accelerated stresses to target
  • History
  • Reaction Rate Coefficient, Zero and First Order, Q10 = 2; Arrhenius function
  • Enhanced Test Designs i.e. Iterative Test Design
  • Materials Guidances - AAMI TIR # 17, ASTM
  • Product design - Features to Avoid
  • The influences of product assembly (molding, automation, etc.)
  • Material selection
  • Packaging Design and Materials
  • Quantitative vs Qualitative Test Attributes - Statistical Analysis
  • Environmental test Limits
  • Worst Case Testing - Achilles Heel
  • "Ambient" or actual product storage and use conditions
  • Significance in Differences in Coefficients of Expansion
  • Commonly used stressors - Temperature, Irradiation, Chemicals, Humidity
  • Stress Cycling
  • Effects of Humidity on common polymers, packaging
  • Effects of sterilization modality (Medical Disposables)
  • Interim test Intervals
  • Test Sample Size Plans and Control Groups
  • Results - Conservative, Unrealistic Outcomes
  • Critical Temperatures of Plastic Materials - Tg, Tm, Ts

Who Will Benefit:
  • Product Design Engineers
  • Quality Management and Engineers
  • Regulatory Affairs
  • Project Managers
  • Staff Evaluating Risk, Safety, and Effectiveness
  • R&D Staff - Engineering and Lab Personnel
  • Process Engineers
  • Packaging Engineers
  • Materials Engineers
  • Manufacturing Engineers
  • Liability - Lawyers, Paralegals


Speaker Profile
Karl J Hemmerich has over 35 years of experience in medical device product design, development, manufacturing, and sterilization. He specializes in sterilization method selection and program development with emphasis on component material selection, process development and sterilization process validation.

He is a member of the Editorial Advisory Board for MDDI magazine as well as a contributing member of the AAMI "Radiation Materials Working Group" that developed Technical Information Report # 17 as the guidance for materials selection, qualification/validation test techniques and quality processing methods for all common sterilization methods. He has written and presented papers on sterilization and materials selection for many corporations, universities and professional organizations, and his papers on Radiation Effects on Polymers and General Aging Theory published in Medical Device and Diagnostics magazine remain industry standards.


You Recently Viewed